The effects of probiotics during refeeding period on jejunum mucosal morphology after short-term starvation in Wistar rats

Alifi Maulidyan, Dikki Drajat Kusmayadi, Bethy S. Hernowo, Tri Wahyu Murni

Abstract

Aim: A period of enteral feeding absence is known to cause intestinal atrophy, damaging mucosal barrier and decrease of enterocyte absorption capacity. However, sometimes nothing per oral is inevitable as a part of medical management. During refeeding, damaged intestinal cells are restored. Probiotics are living microorganism, which wields trophic effect on gut. The aim of this research was to investigate the effects of probiotics, which were given during refeeding period on gut morphology after short-term starvation in rats model.

Methods: Twenty-four Wistar rats were assigned into 4 groups, and each group consists of 6 rats. Group I: rats starved for 3 days, then refeed with probiotics for 3 days (probiotics group), group II: rats starved for 3 days then refeed for 3 days (refed group), group III: rats starved for 3 days (starved group), group IV: rats with normal diet for 3 days (control group). Probiotics dispensed on this research were a combination of Lactobacillus rhamnosus and Lactobacillus acidophilus (Lacidofil®). Jejunum was harvested at day 7 for group I and II, and at day 4 for group III and IV, then was stained with hematoxylin & eosin. A pathologist analyzed number of villi, mucosal thickness, villi height and crypt depth within each specimen. We analyzed the result with Anova or Kruskal Wallis and post-hoc analysis. The study was conducted in Pathology Anatomy Laboratory in Hasan Sadikin Hospital, Bandung, Indonesia.

Results: Starved groups revealed significantly less number of villi, thinner mucosa, shorter villi, shallower crypt depth and more pronounced mucosal damage compared to control group. Refed group had improved all parameters studied compared to starved group, but still had statistical differences compared to control group. In the probiotics group, there were no significant differences in all parameters measured compared to normal group except for crypt depth.

Conclusion: This research revealed that probiotics given during refeeding period in starved rats exerts positive effect on number of villi, mucosal thickness, villi height, and mucosal damage score, but there was no significant effect concerning to crypt depth.

Key words: Probiotics, starvation, refeeding, intestinal mucosa, morphology.
Introduction

A period of enteral nutriments absence is known to alter gut mucosal morphology and function. Long term starvation will lead to intestinal atrophy, decrease in intestinal absorptive capacity, damage of gut barrier and increase in mucosal permeability, which has profound effect on mucosal integrity. (1-3) In critically ill patients, it is known that gut atrophy occurs after 5-8 days of fasting. (4) Meanwhile, in rat model, gut atrophy occurs only after 2-3 days of starvation, hence makes rats commonly used as a gut atrophy model. (5) Probiotics are living organisms that exert health benefit to the host if ingested. (6,7) Several studies reveal that probiotics promote epithelial mucosal restoration and increasing the gut barrier function. (7,8) This study aimed to investigate the effect of probiotics, which were given during refeeding period on gut morphology after short term starvation.

Material and Methods

Twenty-four male Wistar rats, weighing 220-270 grams were used. The rats were divided into 4 groups of 6 animals each. Animal ethical clearance was obtained from Hasan Sadikin Hospital Ethical and Research Committee (no. LB.04.01./A05/EC/024/III/2012). After acclimatization period, animals were divided into 4 groups (Table 1).

Diet given was standard rat chow. Probiotics used in this study were mixture of Lactobacillus acidophilus and Lactobacillus rhamnosus (Lacidophil®), with 2x10⁹ CFU dosage. The probiotics were prepared by dissolving the products in 3 ml water and administered intragastrically. In group I and II, the jejunum specimens were harvested at day 7, meanwhile in group III and IV the jejunum specimens were obtained at day 4. Rats received anesthesia by intramuscular ketamine injection and were subjected to midline laparotomy. The jejunum specimens were identified and removed with gentle manipulation. The specimens were opened, rinsed with normal saline, fixed in neutral buffered formalin, embedded in paraffin, sectioned at 5 µm and stained with hematoxylin & eosin for light microscopic examination. The examination of morphological studies performed in 10 random areas with well-preserved villi in each specimen. Analysis of the specimens consists of number of villi/millimeter, mucosal thickness, villi height, and crypt depth (Figure 1). Mucosal thickness measured from the tip of the villi to the muscularis mucosa. Villi height measured from the tip of the villi to the junction of villi and crypt. Crypt depth measured from the junction of villi and crypt to the bottom of the crypt. Histology examination was performed by a histologist.

All data from the parameters studied were expressed as mean value±standard deviation. Anova test or Kruskal Wallis test with post-hoc analysis was performed for statistical analysis when applicable, with p value <0.05 was considered significant.

Results

Analysis of morphometric results revealed that starved rats (group III) had significantly fewer number of villi, thinner mucosa, shorter villi and shallower crypt depth compared to normal group (group IV), with p value <0.05 (Table 2). Refed group revealed improvements within each parameter studied compared to the starved group. However, reed group (group II) still revealed significantly fewer number of villi, thinner mucosa, shorter villi and shallower crypt depth compared to normal group (group IV). In probiotics group (group I), there were no significant differences concerning number of villi, mucosal thickness and length of villi compared to control group, except the crypt depth (166.67±51.64 µm vs 283.33±75.28 µm) (Figure 2-5).

Discussion

Gut is an important organ not only functioning in digestive system but also serves as the largest immunology organ. (3,4) It is widely known that starvation, especially in long term period could lead into intestinal atrophy. (4,9,10) In critically ill patients intestinal atrophy could occur even only in 5 days of total parenteral nutrition. (11)

Mucosal growth is a dynamic and balanced process of cell shedding and replacement. Sessile enterocyte is located at the tip of villi and continually renewed by younger cells from intestinal crypt. (12-14) Intestinal mucosal regulation depends on gut hormones, growth factors, luminal nutrition and luminal microbes. The presence of enteral nutrition is known to promote epithelial cell proliferation because it
induces ornithine decarboxylase, which would enhance intracellular polyamine, which is essential for DNA synthesis. Enteral nutrition also has direct effect of workload absorption and indirect effect due to gut trophic hormones such as gastrin and cholecystokinin, which are released during feeding. (13,15-17)

Absence of enteral nutrition was known to shorten the villi, impair imunoglobulin transport to epithelial surface, decrease of mucin, and impairment of tight junction, which might lead to bacterial translocation. (1,2,18-21) During starvation period, energy is chiefly used to maintain cell metabolism, and damaged cells would not be balanced with regeneration, therefore intestinal atrophy features would be visible. (22) During starvation, enzyme which neutralize reactive oxygen species would be diminished, therefore the enterocyte would be more prone to inflammation and further damage. (23) In healthy human, starvation for two weeks is known to cause intestinal atrophy, meanwhile in critically ill patients atrophy occurs even after 5-8 days starvation. (11,24) Refeeding is known to restore the mucosal atrophy, meanwhile the time needed exactly for mucosal recovery is still uncertain. (9,10) In rats, it is known that 3 days refeeding would improve mucosal morphology to a certain extent. (8)

Intestinal microbes also have an important role on intestinal cell growth regulation. Luminal microbes ferment polysaccharide, oligosaccharides, protein, peptide and glycoprotein into short chain fatty acids (SCFA) such as acetate, propionate, butyrate and several other products such as lactate, ethanol and succinate through glycolytic and phosphate pentose pathway. (13) Butyrate is the most potent SCFA promoting cell proliferation which reveals an inhibition activity for histone deacetylase enzyme, hence histone hyperacetylation occurs which make the DNA more accessible for various replication enzyme. (25-27)

Probiotics are microorganism, which have benefit effect for the host if consumed. This study uses mixture L. acidophilus and L. rhamnosus, which widely dispensed for medical purposes. (6) Probiotics are known to improve cell survival by increasing anti apoptotic protein Akt/protein kinase B and inhibition of pro apoptotic protein p38 MAP kinase. Probiotics also produce SCFA such as acetate, propionate and butyrate, which are major fuel of intestinal cells and promoting mucosal cell proliferation. (28-34)

In the present study, starved groups obviously reveal decreased value of all parameters resembling mucosal atrophy. Refed animals had less profound mucosal damage if compared to starved animals, and it was concordance with this study. In the other hand, refed group parameters were significantly lower in relation to control group. Meanwhile, probiotics group was not significantly different in relation group in respect to number of villi, mucosal thickness and villi height. The results of this research was in concordance with other research that probiotics might positively impact mucosal cell proliferation. (8,35-37) Meanwhile, a research by Ichikawa also revealed an increasing of crypt cell production rate by 25% in jejunum. (38) The only parameter in the probiotics group which was statistically different from control group was crypt depth. However, crypt regeneration in rats takes 12 weeks and perhaps during this study the effect of probiotics on crypt depth was not visible if only given in 3 days after starvation. (12,39)

This research reveals that probiotics given during refeeding period enhance restoration of jejunal mucosa atrophy. These findings might be helpful for further research of management starved patients.
Table 1. Animal groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Intake for day 1-3</th>
<th>Intake for day 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (probiotics group)</td>
<td>Water only</td>
<td>Rat chow ad libitum+probiotics</td>
</tr>
<tr>
<td>II (refed group)</td>
<td>Water only</td>
<td>Rat chow ad libitum</td>
</tr>
<tr>
<td>III (starved group)</td>
<td>Water only</td>
<td>None (sacrificed at the day 4)</td>
</tr>
<tr>
<td>IV (control group)</td>
<td>Rat chow</td>
<td>None (sacrificed at the day 4)</td>
</tr>
</tbody>
</table>

Table 2. Results of mucosa morphometry analysis

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of villi/millimeter</th>
<th>Mucosal thickness (µm)</th>
<th>Villi height (µm)</th>
<th>Crypt depth (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10.33±0.82<sup>ad</sup></td>
<td>616.67±116.91<sup>ad</sup></td>
<td>450.00±122.48<sup>ad</sup></td>
<td>166.67±51.64<sup>ad</sup></td>
</tr>
<tr>
<td>II</td>
<td>8.33±1.03<sup>ae</sup></td>
<td>466.67±81.65<sup>ace</sup></td>
<td>300.00±83.67<sup>ace</sup></td>
<td>175.00±41.83<sup>ce</sup></td>
</tr>
<tr>
<td>III</td>
<td>7.83±0.98<sup>bcd</sup></td>
<td>333.33±40.83<sup>bcd</sup></td>
<td>216.67±25.82<sup>bcd</sup></td>
<td>116.67±25.82<sup>bcd</sup></td>
</tr>
<tr>
<td>IV</td>
<td>10.67±1.03<sup>be</sup></td>
<td>741.67±14.89<sup>be</sup></td>
<td>458.33±91.74<sup>be</sup></td>
<td>283.33±75.28<sup>be</sup></td>
</tr>
</tbody>
</table>

Legend: ^a_{p<0.05} between probiotics and refeed groups in respect to number of villi, mucosal thickness and villi height; ^b_{p<0.05} between control and starved rats within each parameter studied; ^c_{p<0.05} between refeed and starved groups in respect to mucosal thickness, villi height and crypt depth; ^d_{p<0.05} between probiotics and starved groups within each parameter studied; ^e_{p<0.05} between refeed and control groups within each parameter studied; ^f_{p<0.05} between probiotics and control group in respect to crypt depth

Figure 1. Measurement of the specimen

Legend: Line=mucosal thickness; dash=villus height; dot=crypt depth.
Table 1. Animal groups
Table 2. Results of mucosa morphometry analysis

Figure 1. Measurement of the specimen

Legend: ap<0.05 between probiotics and refed groups in respect to number of villi, mucosal thickness and villi height; bp<0.05 between control and starved rats within each parameter studied; cp<0.05 between refed and starved groups in respect to mucosal thickness, villi height and crypt depth; dp<0.05 between probiotics and starved groups within each parameter studied; ep<0.05 between refed and control groups within each parameter studied; fp<0.05 between probiotics and control group in respect to crypt depth.

Legend: Line=mucosal thickness; dash=villus height; dot=crypt depth.

Figure 2. The specimen of group I (probiotics group)

Legend: The number of villi, mucosal thickness and crypt resemble normal jejunum.

Figure 3. The specimen of group II (refed group)

Legend: The amount of villi were reduced, the villi were flattened and mucosa was thinner compared to control group.
Figure 4. The specimen of group III (starved group)

Legend: The number of villi were severely reduced and flattened, and mucosa was thinner compared to probiotics, refed and control groups.

Figure 5. Specimen of group IV (control group)

Legend: Villi, crypt and mucosal thickness were normal.
References